Please use this identifier to cite or link to this item:
Title: A reproducible brain tumour model established from human glioblastoma biopsies
Authors: Wang, Jian;Miletic, Hrvoje;Sakariassen, Per Øystein;Huszthy, Peter Csaba;Jacobsen, Hege;Brekkå, Narve;Li, Xingang;Zhao, Peng;Mørk, Sverre;Chekenya, Martha;Bjerkvig, Rolf;Enger, Per Øyvind
Issue Date: 29-Dec-2009
Publisher: BioMed Central
Description: <p>Background: Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates.</p> <p>Methods: In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features.</p> <p>Results: The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days &plusmn; 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms.</p> <p>Conclusions: In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.</p>
Peer Reviewed
Other Identifiers: 1471-2407
Appears in Collections:Faculty of Medicine and Dentistry

Files in This Item:
Click on the URI links for accessing contents.

Items in HannanDL are protected by copyright, with all rights reserved, unless otherwise indicated.